Math, asked by rajat5841, 1 year ago

if sin theta is equal to a square minus b square divided by a square + b square find 1 + 10 theta cos theta​

Answers

Answered by Anonymous
15

Correct Question:

  • If sin theta is equal to a square minus b square divided by a square + b square find 1 + tan theta cos theta.

Answer:

  • \large\bold\red{\frac{2 {a}^{2} }{ {a}^{2} +  {b}^{2}  } }

Step-by-step explanation:

Given,

  •  \sin( \theta)  =  \frac{{a}^{2}  -  {b}^{2}}{ {a}^{2} +  {b}^{2}   }

To find :

  •  \cos( \theta )

We know that,

 \cos( \theta )  =  \sqrt{1 -  { \sin }^{2}  \theta }  \:

Therefore,

Substituting the values,

We get,

 =  >  \cos( \theta )  =  \sqrt{1 -  {( \frac{ {a}^{2}  -  {b}^{2} }{ {a}^{2} +  {b}^{2}  } )}^{2} }  \\  \\  =  >  \cos( \theta )  =  \sqrt{ \frac{ {( {a}^{2}  +  {b}^{2}) }^{2}  -  {( {a}^{2} -  {b}^{2} ) }^{2} }{ {( {a}^{2}  +  {b}^{2} )}^{2} } }

But,

We know that,

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

Therefore,

We get,

 =  >  \cos( \theta )  =   \frac{ \sqrt{( {a}^{2} +  {b}^{2}   +  {a}^{2}  -  {b}^{2} )( {a}^{2}  +  {b}^{2} -  {a}^{2} +  {b}^{2}  ) } }{ {a}^{2} +  {b}^{2}  }  \\  \\  =  >  \cos( \theta )  =  \frac{ \sqrt{2 {a}^{2}  \times 2 {b}^{2} } }{ {a}^{2} +  {b}^{2}  }  \\  \\  =  >  \cos( \theta )  =  \sqrt{4 {a}^{2} {b}^{2}  }  \times  \frac{1}{ {a}^{2} +  {b}^{2}  }  \\  \\  =  >  \cos( \theta )  =  \frac{2ab}{ {a}^{2} +  {b}^{2}  }

Therefore,

We get,

  =  > \tan( \theta )  =  \frac{ \sin( \theta ) }{ \cos( \theta ) }  \\  \\  =  >  \tan( \theta )  =  \frac{ \frac{ {a}^{2}  -  {b}^{2} }{ {a}^{2} +  {b}^{2}  } }{ \frac{2ab}{ {a}^{2} +  {b}^{2}  } }   \\  \\  =  >  \tan( \theta )  =  \frac{ {a}^{2}  -  {b}^{2} }{2ab}

Thus,

We get,

1 +  \tan( \theta )  \cos( \theta )  = 1 + ( \frac{ {a}^{2} -  {b}^{2}  }{2ab} )( \frac{2ab}{ {a}^{2} +  {b}^{2}  } ) \\  \\  = 1 +  \frac{ {a}^{2} -  {b}^{2}  }{ {a}^{2}  +  {b}^{2} } \\  \\  =  \frac{ {a}^{2} +  {b}^{2} +  {a}^{2} -  {b}^{2}    }{ {a}^{2} +  {b}^{2}  }  \\  \\  =   \large \bold{\frac{2 {a}^{2} }{ {a}^{2} +  {b}^{2}  } }

Similar questions