Math, asked by Shivamgarg796, 1 year ago

If sin theta is equal to p upon underoot p square+q square ......
Then prove that q sin theta = p cos theta.?

Answers

Answered by ramyaranjan085
7

Step-by-step explanation:

Here is your answer. I hope that helps

Attachments:
Answered by FelisFelis
2

pcos\theta=qsin\theta proved.

Step-by-step explanation:

Consider the provided information.

sin\theta=\frac{p}{\sqrt{p^2+q^2} }

Squaring both sides.

sin^2\theta=(\frac{p}{\sqrt{p^2+q^2} })^2

sin^2\theta=\frac{p^2}{p^2+q^2}

1-cos^2\theta=\frac{p^2}{p^2+q^2} (∴sin²θ=1-cos²θ)

cos^2\theta=1-\frac{p^2}{p^2+q^2}

cos^2\theta=\frac{p^2+q^2-p^2}{p^2+q^2}

cos^2\theta=\frac{q^2}{p^2+q^2}

cos\theta=\frac{q}{\sqrt{p^2+q^2}}

Multiply the above equation with p.

pcos\theta=\frac{pq}{\sqrt{p^2+q^2}}......(1)

And multiply the provided equation with q.

qsin\theta=\frac{pq}{\sqrt{p^2+q^2} }......(2)

From equation 1 and 2.

pcos\theta=qsin\theta

Hence,  proved

#Learn more

Prove the trigonometric identity 1+ cot square A= cosec square A

brainly.in/question/2259148

Similar questions