Math, asked by yana85, 1 year ago

if sin theta + sin^2 theta = 1 , prove that cos ^2 theta + cos^4 theta = 1

Answers

Answered by atharvvtiwari
5

Answer:

In the attachment.. Hope it's helpful.?


Attachments:
Answered by MrThakur14Dec2002
12
 \huge{ \underline{ \bold{ \blue{solution}}}}..........



 \sin \theta \: + {sin}^{2} \theta \: = 1 \: \: \: \: \: \huge{eq(a.)}\: \: \: \: \: \: \: \green{it \: is \: given \: in \: the \: question}
sin \theta \: = 1 - {sin}^{2} \theta \\ \\ sin \theta \: = {cos}^{2} \theta \: \: \: .......... eq(1.)


NOW,



 \huge{ \underline{ \bold{ \red{left \: hand \: side}}}}


 = {cos}^{2} \theta \: + {cos}^{4} \theta \: \\ \\
 \huge{from \: eq.(1.)}


 = sin \theta \: + { ({cos}^{2} \theta)}^{2} \\ \\ = sin \theta \: + {(sin \theta)}^{2} \\ \\ = sin \theta \: + {sin}^{2} \theta


 = 1 = \huge{ \underline{ \bold{ \red{ \: right \: hand \: side}}}}


Therefore RHS = LHS



 \huge{ \underline{ \bold{ \pink{ \: hence \: proved}}}}

MrThakur14Dec2002: Thank You
Similar questions