Math, asked by tippurabiya172, 2 months ago

If Sin * theta = X/Y then Cos '0' is
A. y/(sqrt(y ^ 2 - x ^ 2));
B. y/x;
C. x/(sqrt(y ^ 2 - x ^ 2))
D. (sqrt(y ^ 2 - x ^ 2))/y
plz answer me correctly yaar​

Attachments:

Answers

Answered by MysticSohamS
6

Answer:

hey here is your answer in above pic

pls mark it as brainliest

Attachments:
Answered by kulkarninishant346
4

sinθ =\frac{sideoppositetoangleθ​ }{hypotenuse}

or sinθ= \frac{Perpendicular​ }{hypotenuse}

sin θ =\frac{x^{2} - y^{2} }{x^{2} + y^{2}  }  ⇒\frac{P}{H} = \frac{x^{2}- y^{2}  }{x^{2} + y^{2} }  

⇒  \frac{AB}{BC} = ​\frac{x^{2} -y^{2} }{x^{2} +y^{2} }    

side opposite to angle θ=AB=x^{2} - y^{2}

hypotenuse AC=x^{2} + y^{2}

In right angled △ABC, we have

(AB)^{2} + (BC)^{2}=(AC)^{2}(x^{2}+y^{2} )+

(x^{2} +y^{2}) ^{2}   ⇒(BC)^{2}=(x^{2}+ y^{2} )^{2}(x^{2} -y^{2} )^{2}(By Pythagoras theorem)

(BC)^{2} =  [x^{2}+y^{2} + x^{2}- y^{2}]  [x^{2} +y^{2} (x^{2}- y^{2} )]  = (2x ^{2} )  (2y^{2} )

(using identity a^{2}b^{2} =(a+b)(a−b))

BC=\sqrt{4x} ^{2} y^{2} = ±2xy

taking positie square root since, side cannot be negative

cosθ=  \frac{Base}{Hypotenuse}  =\frac{BC}{AC}  = \frac{2xy}{x^{2} +y^{2} }

and tanθ=  \frac{Perpendicular}{Base}  =  \frac{AB}{BC}  = \frac{x^{2} -  y^{2} }{2xy}

so,\frac{1}{tanθ}  =   \frac{1}{x^{2}- y^{2} }  =  \frac{2xy}{x^{2} - y^{2} }

                   \frac{}{2xy}

Similar questions