if sin theta=x/y then cos theta is
Answers
Answer:
Step-by-step explanation:
Sin Q = x/y, Cos Q =?
We know that,
(Sin Q)^2 + (Cos Q)^2 = 1
or, Cos Q = +- √( 1 - (Sin Q)^2 )
= +- √( 1 - (x/y)^2 )
= +- √( (y^2 - x^2)/y^2 )
= +- √(y^2 - x^2)/y
Answer:
cos θ = √( y² - x² )/ y
Step-by-step explanation:
Given :- sin θ = x/y
To Find :- Value of cos θ.
Solution :-
It is given that sin θ = x/y .
Its is known from trigonometric formulas that,
sin² θ+cos² θ = 1
From the above formula we can contemplate that,
cos² θ = 1-sin² θ
Putting the values now,
cos² θ = 1 - ( x/y )²
⇒ cos² θ = (y² - x² )/y²
Square root both the sides,
⇒ √cos² θ = √(y² - x² )/√y²
⇒ cos θ = √( y² - x² )/ y
Therefore, cos θ = √( y² - x² )/ y .
#SPJ2
https://brainly.in/question/14390702
https://brainly.in/question/16504844