Math, asked by rajanimadam1952, 1 year ago

If sin to the power 4 theta upon a + cos to the power 4 theta upon B is equals to one upon A + B then prove that sin to the power 8 theta upon a cube + cos to the power 8 theta upon b cube is equals to one upon A + B whole cube

Answers

Answered by raushan0001
10

is this really helpful for you?

Attachments:
Answered by Anonymous
5

Given that,

\frac{sin^4\alpha }{a} + \frac{cos^4\alpha }{b} = \frac{1}{a+b}

We have to prove that

\frac{sin^8\alpha }{a^3} +\frac{cos^8\alpha }{b^3} = \frac{1}{(a+b)^3}

  • Now, we have the the given equation:

         \frac{sin^4\alpha }{a} + \frac{cos^4\alpha }{b} = \frac{1}{a+b}

      Multiplying the above equation by  ab(a+b) , we get

      b(a+b)sin^4\alpha +a(a+b)cos^4\alpha = ab

  • Now, using the identity

       cos^2A-1=sin^2A, we get

      b(a+b)sin^4\alpha +a(a+b)(1-sin^2\alpha)^2 = ab

  • Expanding (1-sin^2\alpha )^2 using the property

      (a -b)^2=a^2+b^2-2ab, we get

      b(a+b)sin^4\alpha +a(a+b)(1+sin^4\alpha -2sin^2\alpha) = ab

      (a+b)^2sin^4\alpha -2a(a+b)sin^2\alpha + a^2 = 0

  •  Now this equation is in the form of a^2+b^2-2ab=(a-b)^2 where

      a= (a+b)sin^2\alpha , b=a, therefore we get

       ((a+b)sin^2\alpha -a)^2=0

       Now, we get

        sin^2\alpha = \frac{a}{a+b}   and cos^2\alpha =\frac{b}{a+b}

  •  Now,

        \frac{sin^8\alpha }{a^3} +\frac{cos^8\alpha }{b^3} = \frac{a^4}{(a+b)^4a^3} +  \frac{b^4}{(a+b)^4b^3}

         \frac{sin^8\alpha }{a^3} +\frac{cos^8\alpha }{b^3} = \frac{a^4b^3+a^3b^4}{(a+b)^4a^3b^3}

         \frac{sin^8\alpha }{a^3} +\frac{cos^8\alpha }{b^3} = \frac{a^3b^3(a+b)}{(a+b)^4a^3b^3}

         \frac{sin^8\alpha }{a^3} +\frac{cos^8\alpha }{b^3} = \frac{1}{(a+b)^3}, hence proved.

       

     

Similar questions