Math, asked by tushar03vij, 10 months ago

If sin x and cos x are the root of the equation ax^2-bx-1=0 then find the relation a and b

Answers

Answered by Anonymous
4

Solution

ax²-bx-1=0

=>ax²+(-b)X+(-1)=0

now the solution of the equation

ax²+bx+c=0

x(1) =  \frac{ - b +   \sqrt{b {}^{2} - 4ac } }{2a}  \\ x(2) =  \frac{ - b -  \sqrt{b {}^{2} - 4ac } }{2a}  \\ for \: the \: above \: equation \\ x(1) =  \frac{ - ( - b) +  \sqrt{( - b) {}^{2} - 4 \times a \times ( - 1) } }{2a}  =  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{b +  \sqrt{b {}^{2} + 4a } }{2a}   = sin(a)\\ similarly....... \\ x(2) =  \frac{b -  \sqrt{b {}^{2} + 4a } }{2a} =  \cos(a)   \\ now.... \\  \sin {}^{2} (a)  +  \cos {}^{2} (a)   =(\frac{b +  \sqrt{b {}^{2} + 4a } }{2a}  )  {}^{2}  + (\frac{b  -   \sqrt{b {}^{2} + 4a } }{2a}  ) {}^{2}  \\  =  &gt; 1 = \frac{(b +  \sqrt{b {}^{2} + 4a } ) {}^{2} }{4a {}^{2} }   + \frac{(b  -   \sqrt{b {}^{2} + 4a } ) {}^{2} }{4a {}^{2} }   \\  =  &gt; 1 =  \frac{(b +  \sqrt{b {}^{2} + 4a }) {}^{2}  + (b -  \sqrt{b {}^{2}   +  4a} )  {}^{2}  }{4a {}^{2} }  \\  =  &gt; 4a {}^{2}  = 2(b {}^{2}  + b {}^{2}  + 4a  ) \\  =  &gt; 2a {}^{2}   = 2b {}^{2}  + 4a   \\  =  &gt;  2a {}^{2}  </u><u>-</u><u> </u><u>4a</u><u> </u><u>-</u><u> </u><u>2 b {}^{2}  </u><u>=</u><u>0</u><u>\\  =  &gt; a {}^{2}  </u><u>-2a</u><u> </u><u>-</u><u> b {}^{2}  = 0

here the algebraic formula which is used is,

(x+y)²+(x-y)²=2(+)

Answered by rishu6845
2

Answer:

a² - 2a - b² = 0

Step-by-step explanation:

Given---> Sinx and Cosx are root of the equation

ax² - bx - 1 = 0

To find ---> Relation between a and b

Solution----> ATQ,

ax² - bx - 1 = 0

We know that ,

Sum of roots = - coefficient of x / Coefficient of x²

Product of roots = Constat term / Coefficient of x²

ATQ, Roots of equation are Sinx and Cosx , so

Sum of roots = - ( -b / a )

=> Sinx + Cosx = b / a ........................(1)

Product of roots = - 1 / a

=> Sinx Cosx = - 1 / a .............................(2)

Now from equation (1)

Sinx + Cosx = b / a

Squaring both sides we get,

=> ( Sinx + Cosx )² = ( b / a )²

We have an identity as follows

( a + b )² = a² + b² + 2ab , applying it here we get

=> Sin²x + Cos²x + 2 Sinx Cosx = b²/a²

We have a formula as follows,

Sin²θ + Cos²θ = 1 , applying it we get,

=> 1 + 2 ( -1 / a ) = b² / a²

=> 1 - ( 2 / a )= b² / a²

Multiplying equation by a² , we get

=> a² - a² ( 2 / a ) = a² ( b² / a² )

=> a² - 2 a = b²

=> a² - 2a - b² = 0

Similar questions