Math, asked by karruu9790, 1 year ago

If sin θ = x and sec θ = y, then find the value of cot θ.

Answers

Answered by raizbadarudin
4

Answer:

cot∅=1/xy

Step-by-step explanation:

sin∅=x

sec∅=y

sec∅=1/cos∅

So, cos∅=1/y

tan∅=sin∅/cos∅=x/(1/y)=xy

cot∅=1/tan∅=1/xy

Answered by BrainlyConqueror0901
129

Answer:

\huge{\boxed{\boxed{\sf{\cot(θ)  =  \frac{1}{xy}}}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION-}}}}}

>> sin θ = x (given)

>>sec θ = y, (given)

 = ) \sec(θ)  =  \frac{1}{ \cos(θ) } \\  = )y  =  \frac{1}{ \cos(θ) }  \\  = ) \cos(θ)  =  \frac{1}{y}

>>ACCORDING TO THE QUESTION

>> WE HAVE TO FIND THE VALUE OF

=) cot θ = ?

 = ) \cot(θ)  =  \frac{ \cos(θ) }{ \sin(θ) }  \\  = ) \cot(θ)  =  \frac{ \frac{1}{y} }{x}  \\  = ) \cot(θ)  =  \frac{1}{xy}

\huge{\boxed{\boxed{\sf{\cot(θ)  =  \frac{1}{xy}}}}}

Similar questions