Math, asked by panduammulu14, 10 months ago

If sin x, cos x is the roots of r^2-pt+q=0 then show that sin^3x + cos^3x is equal to p^3-3pq

Answers

Answered by pulakmath007
16

Please check the attachment

Please Mark it Brainlist

FOLLOW ME

THANK YOU

Attachments:
Answered by Tanujrao36
26

\huge\bf{ \underline{ \underline{Question}}}

  • If Sinx , Cosx is the roots of \sf{\ r^{2}-pt+q\:=\:0} then show that \sf{\ Sin^{3}x+\ Cos^{3}x} is equal to \sf{(\ p^{3}-3pq)}

\huge\bf{ \underline{ \underline{Solution}}}

  • \sf{Sinx\:+\:Cosx\:=\:p}

  • \sf{SinxCosx\:=\:q}

\sf{\ Sin^{3}x+\ Cos^{3}x\:can\:be\: written\:as}

\tt{\ (Sinx+Cosx)^{3}-3SinxCosx(Sinx+Cosx)}

\bf{ Put\:value\:in\:formula}

{}

\mapsto\sf{\ p^{3}-3p(q)}

{}

\mapsto\sf{\ p^{3}-3pq}

\bf{ \underline{ \underline{Hence\:Proved}}}

\sf{ }

Similar questions