If sin (x – α) = k sin (x + α) express tan x in terms of k and α.
Answers
Answered by
7
sin(x-a) = k sin(x+a)
sinxcosa - sinacosx = k { sinxcosa + sinacosx }
sinxcosa(1-k) = sinacosx (k+1)
tanx cota = 1+k/1-k
tanx = (1+k/1-k) tan a
Note : formula used : sin(A+B) = sinA cosB + sinB cosA
and sin(A-B) = sinA cosB - sinB cosA
sinxcosa - sinacosx = k { sinxcosa + sinacosx }
sinxcosa(1-k) = sinacosx (k+1)
tanx cota = 1+k/1-k
tanx = (1+k/1-k) tan a
Note : formula used : sin(A+B) = sinA cosB + sinB cosA
and sin(A-B) = sinA cosB - sinB cosA
keshavuppal:
thank you so much <3
Similar questions