If sin(x + y)= log(x+y), then dy/dx
Answers
Answered by
3
Answer:
Sin(x+y)=log(x+y)
Þ d/dx{sin(x+y)}=d/dx{log(x+y)}
Þ Cos(x+y)(1+dy/dx)=1/x(1+dy/dx)
Þ Cos(x+y)(1+dy/dx) - 1/x(1+dy/dx)=0
Þ (1+dy/dx){ Cos(x+y) – 1/x}=0
Þ It implies (1+dy/dx)=0
Þ dy/dx=-1
Answered by
3
Answer:
Sin(x+y)=log(x+y)
Þ d/dx{sin(x+y)}=d/dx{log(x+y)}
Þ Cos(x+y)(1+dy/dx)=1/x(1+dy/dx)
Þ Cos(x+y)(1+dy/dx) - 1/x(1+dy/dx)=0
Þ (1+dy/dx){ Cos(x+y) – 1/x}=0
Þ It implies (1+dy/dx)=0
Þ dy/dx=-1
so answer is -1
Similar questions