Math, asked by DarbieWilliams, 6 months ago

If sin²θ = 3 sinθcosθ , prove that tanθ = 1 or ½.​

Answers

Answered by MaIeficent
10

Step-by-step explanation:

Correct Question:-

If 1 + sin²θ = 3 sinθcosθ , prove that tanθ = 1 or ½.

Given:-

  • sin²θ = 3 sinθcosθ

To Prove:-

  • tanθ = 1 or ½

Proof:-

\rm1 +  {sin}^{2}  \theta = 3sin \theta  cos \theta

Dividing LHS and RHS by cos²θ

 \rm  \dashrightarrow\dfrac{1 +  {sin}^{2} \theta }{ {cos}^{2}  \theta} =  \dfrac{3sin \theta  cos \theta}{ {cos}^{2} \theta}

 \rm  \dashrightarrow\dfrac{1 } { {cos}^{2}   \theta} + \dfrac{  {sin}^{2} \theta }{ {cos}^{2}  \theta} =  \dfrac{3sin \theta }{ {cos} \theta}

 \rm  \dashrightarrow  {sec}^{2}   \theta+ {tan}^{2} \theta = 3tan \theta  \:  \:  \:  \:  \:  \:  \:  \bigg( \because \dfrac{1}{ {cos}^{2} \theta }   =  {sec}^{2} \theta \:  \:  \: (and) \:  \:  \dfrac{sin \theta}{cos \theta}  = tan \theta \bigg)

 \rm  \dashrightarrow1 +   {tan}^{2}   \theta+ {tan}^{2} \theta = 3tan \theta   \:  \:  \:  \:  \:  \:  \bigg( \because {sec}^{2}  \theta = 1 +  { tan }^{2}   \theta \bigg)

 \rm  \dashrightarrow  2 {tan}^{2}\theta   -  3tan \theta  + 1 = 0

 \rm   \underline{By \: factorisation:-}

 \rm  \dashrightarrow  2 {tan}^{2}\theta   -  2tan \theta    -   tan \theta+ 1 = 0

 \rm  \dashrightarrow  2tan \theta( {tan}\theta   -  1)  - 1(  tan \theta -  1) = 0

 \rm  \dashrightarrow  (2tan \theta   - 1)(  tan \theta -  1) = 0

 \rm  \dashrightarrow  2tan \theta   - 1 = 0 \:  \:  \:  \: (or) \:  \:  \:  \:  tan \theta -  1= 0

 \rm  \dashrightarrow  tan \theta   =   \dfrac{1}{2}  \:  \:  \:  \: (or) \:  \:  \:  \:  tan \theta = 1

 \rm  \dashrightarrow  tan \theta   =   \dfrac{1}{2}  \:  \:   (or)  \:  \:  1

Hence Proved

Similar questions