If sin23 ° = p, then the value of sin67 ° is calculated as p
Answers
Answered by
1
Answer:
root(1-p^2)
Step-by-step explanation:
sin67
=cos(90-67)
=cos23
=root(1-sin^23)
=root(1-p^2)
Answered by
1
Answer:
sin67°=(1-p²)/p²
Step-by-step explanation:
sin 90°= 1
sin(A+B)=sinA×cosB+cosA×sinB
sin(23°+67°)=sin23°cos67°+cos23°sin67°=1
p×cos67°+cos23°sin67°=1
p×sin(90°-67°)+cos23°sin67°=1
p×sin23°+cos23°sin67°=1
p²+cos23°sin67°=1 .................(1)
sin23°=p
sin²23°=p²...........(squaring both side)
1-cos²23°=p²..........(sin²A=1-cos²A)
cos²23°=1-p²
cos23°=√(1-p²)
putting value of cos 23° in eq. 1
p²+√(1-p²)sin67°=1
√(1-p²)sin67°=1-p²
sin67°=(1-p²)/p²
Similar questions