Math, asked by saikrishna8742, 1 year ago

If sin²A =1/2,then find the value of cos²A

Answers

Answered by SparklingBoy
4

Answer:

Given that :-)

 {sin}^{2} A =  \frac{1}{2}

Also we know that

property in trigonometric ratios sin and Cos is:-)

 {sin}^{2}A  +  {cos}^{2} A = 1

Now

Using the property and given we can calculate the required ratio as:-)

 \frac{1}{2}  +  {cos}^{2} A = 1 \\  \implies \:  {cos}^{2} A= 1 -  \frac{1}{2}  \\  \implies {cos}^{2} A =  \frac{1}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{Answer}}

So, required value of:

{cos}^{2} A =  \frac{1}{2}

Answered by Anonymous
8

\large \underline{ \underline{ \sf \:  Answer  : \:  \:  \: }}

 \to  \sf  { \cos}^{2} A= \frac{1}{ \: 2 \: }

 \large \underline{ \underline{ \sf \: Explaination : \:  \:  \: }}

Given ,

   \star \:  \: \sf  { \sin}^{2} A =  \frac{1}{ \: 2 \: }

We know that ,

 \large  \fbox{ \fbox{\sf  { \sin}^{2} A +  { \cos}^{2} A = 1 }}

 \to \sf   \frac{1}{ \: 2 \: }  +  { \cos}^{2} A= 1 \\  \\ \to   \sf  { \cos}^{2} A= 1 -  \frac{1}{ \: 2 \: }  \\  \\  \to  \sf  { \cos}^{2} A= \frac{1}{ \: 2 \: }

Similar questions