Math, asked by Rahul7285, 1 year ago

If Sin2a =4 sin2b then show that 5 tan(a-b)=3 tan (a+b)

Answers

Answered by AnkitaRoy
22

I think in RHs it is 3tan(a+b)

This can be solved by using componendo and dividendo.
sin 2a = 4 sin 2b (GIVEN)
then,
= > sin 2a / sin 2b = 4/1
Apply Componendo – Dividendo,

( sin 2a + sin 2b ) / ( sin 2a - sin 2b ) = (4+1)/(4-1)
{ 2 sin (a+ b). cos (a- b) } / { 2 cos (a+ b). sin (a- b) } = 5/3
tan (a+ b) / tan (a- b) = 5/3

5 tan (a- b) = 3 tan (a+ b)

Hence, Proved.
Answered by Sayani022
6

Answer:

Plzz mark me as a brainliest.....

Step-by-step explanation:

Attachments:
Similar questions