If Sin2a =4 sin2b then show that 5 tan(a-b)=3 tan (a+b)
Answers
Answered by
22
I think in RHs it is 3tan(a+b)
This can be solved by using componendo and dividendo.
sin 2a = 4 sin 2b (GIVEN)
then,
= > sin 2a / sin 2b = 4/1
Apply Componendo – Dividendo,
( sin 2a + sin 2b ) / ( sin 2a - sin 2b ) = (4+1)/(4-1)
{ 2 sin (a+ b). cos (a- b) } / { 2 cos (a+ b). sin (a- b) } = 5/3
tan (a+ b) / tan (a- b) = 5/3
5 tan (a- b) = 3 tan (a+ b)
Hence, Proved.
Answered by
6
Answer:
Plzz mark me as a brainliest.....
Step-by-step explanation:
Attachments:
Similar questions
Math,
7 months ago
Geography,
7 months ago
Math,
1 year ago
Hindi,
1 year ago
Social Sciences,
1 year ago