if sin2A+cos2B=1then find the value of cos2A+sin2B
Answers
Answered by
2
Answer:
Given That: Sin2A+Cos2B = 1
Step-by-step explanation:
2(SinA+CosB)=1
Then SinA+CosB=1/2
Cos2A+Sin2B
Then, 2(CosA+SinB)
We, know that SinA+CosB=1/2
Then, 2(1/2)
So,Cos2A+Sin2B=1
Answered by
0
Answer:
cos²A+sin²B = (√3+1)/2
Step-by-step explanation:
as we know in trigonometry a+b=90°
sin²A+cos²B = 1
sin²(90-A)+cos²B = 1
cos²B+cos²B=1 [ from cos²B= sin²(90-A)]
2cos²B = 1
cos²B= 1/2
cos²B = cos²60
B= 60°
A = 90 - 60 = 30°
cos²A+sin²B = cos²30°+sin²60° = (√3/2)+1/2 = (√3+1)/2
Similar questions