Math, asked by khimasagarrao2006, 11 months ago

if sin2A+cos2B=1then find the value of cos2A+sin2B​

Answers

Answered by kiransagar9915
2

Answer:

Given That: Sin2A+Cos2B = 1

Step-by-step explanation:

2(SinA+CosB)=1

Then SinA+CosB=1/2

Cos2A+Sin2B

Then, 2(CosA+SinB)

We, know that SinA+CosB=1/2

Then, 2(1/2)

So,Cos2A+Sin2B=1

Answered by sudiplal22
0

Answer:

cos²A+sin²B = (√3+1)/2

Step-by-step explanation:

as we know in trigonometry  a+b=90°

sin²A+cos²B = 1

sin²(90-A)+cos²B = 1

cos²B+cos²B=1     [ from cos²B= sin²(90-A)]

2cos²B = 1

cos²B= 1/2

cos²B = cos²60

B= 60°

A = 90 - 60 = 30°

cos²A+sin²B = cos²30°+sin²60° = (√3/2)+1/2  = (√3+1)/2

Similar questions