If sin2AcosBsinC=sinB.sin(A+C) then tanAtanB,tanC are in
Answers
Answered by
0
Step-by-step explanation:
Given
In ΔABC
tanA:tanB:tanC=3:4:5
⟹tanA=3k, tanB=4k, tanC=5k
We know that
In ΔABC
∑tanA=ΠtanA
⟹3k+4k+5k=(3k)(4k)(5k)
⟹12k=60k3
⟹5k2=1
⟹k=51
⟹tanA=53, tanB=54, tanC=55
⟹sinA=5+93, sinB=5+164,sinC=5+25
Similar questions