If sin⁴α + 4cos⁴β + 2 = 4√2 sinα.cosβ ; α, β ∈ [0, π], then cos(α + β) is equal to :
(A) 0 (B) –1
(C) √2 (D) –√2
Answers
||✪✪ QUESTION ✪✪||
If sin⁴α + 4cos⁴β + 2 = 4√2 sinα.cosβ ; α, β ∈ [0, π], then cos(α + β) is equal to ?
|| ✰✰ ANSWER ✰✰ ||
→ sin⁴α + 4cos⁴β + 2 = 4√2 sinα.cosβ
→ sin⁴α + 4cos⁴β + 1 + 1 = 4 * √2 * sinα * cosβ
Now, AM ≥ GM says That , Arithmetic mean (A.M.) is greater than geometric mean (G.M.) for same Number of variables where variables are ≥ 0...
So , Using This in LHS,
→ (sin⁴α + 4cos⁴β + 1 + 1)/4 = ⁴√(sin⁴α * 4cos⁴β * 1 * 1)
→ (sin⁴α + 4cos⁴β + 1 + 1) = 4 * [ ⁴√(sin⁴α * cos⁴β * 4) ]
→ (sin⁴α + 4cos⁴β + 1 + 1) = 4 * [ sinα * cosβ * √2) {As (√2)⁴ = 4}
→ (sin⁴α + 4cos⁴β + 1 + 1) = 4 * √2 * sinα * cosβ
So, we can say That , AM = GM.
ஃ with equality if and only a1 = a2 = a3 = ________aN.
_________________
So, we Have :-
→ sin⁴α = 4cos⁴β = 1
→ sin⁴α = 1
→ 4cos⁴β = 1
when ,
→ sin⁴α = 1
→ sin⁴α = sin90°
→ sin⁴α = sin⁴90°
→ α = 90°..
And,
→ 4cos⁴β = 1
→ cos⁴β = 1/4
→ cos⁴β = (1/√2)⁴
→ cos⁴β = (cos45°)⁴
→ cosβ = cos45°
→ β = 45°..
_______________
Now,
→ cos(α + β)
→ cos(90°+45°)
→ -sin(45°)
→ -(1/√2) (Ans.)
Hence, The value of cos(α + β) is (-1/√2)
CorrEcT QuEstioN:-
★If sin⁴α + 4cos⁴β + 2 = 4√2 sinα.cosβ ; α, β ∈ [0, π], then cos(α + β) is equal to :
(A) 0 (B) –1
(C) √2 (D) –√2 (E) -1√2
AnSwEr:-
★-1√2(E)
SteP By SteP ExplainaTion:-
★ sin⁴α + 4cos⁴β + 2 = 4√2 sinα.cosβ
★ sin⁴α + 4cos⁴β + 1 + 1 = 4 ×√2 ×sinα × cosβ
Arithmetic progression is always equal or greater than geometric progression;
→ (sin⁴α + 4cos⁴β + 1 + 1)/4 = ⁴√(sin⁴α ×4cos⁴β ×1 × 1)
→ (sin⁴α + 4cos⁴β + 1 + 1) = 4 × [ ⁴√(sin⁴α ×cos⁴β × 4) ]
→ (sin⁴α + 4cos⁴β + 1 + 1) = 4 ×[ sinα ×cosβ ×√2) (√2)⁴ = 4)
→ (sin⁴α + 4cos⁴β + 1 + 1) = 4 × √2 ×sinα ×cosβ
AM = GM.
a1 = a2 = a3 = .......aN.
Now,
→ sin⁴α = 4cos⁴β = 1
→ sin⁴α = 1
→ 4cos⁴β = 1
when ,
→ sin⁴α = 1
→ sin⁴α = sin90°
→ sin⁴α = sin⁴90°
→ α = 90°
Also,
→ 4cos⁴β = 1
→ cos⁴β = 1/4
→ cos⁴β = (1/√2)⁴
→ cos⁴β = (cos45°)⁴
→ cosβ = cos45°
→ β = 45°
Now,
→ cos(α + β)
→ cos(90°+45°)
→ -sin(45°)
→ -1√2