Math, asked by AG05, 2 months ago

If sin40°=3x-2, evaluate tan50°+tan20°=? in terms of x

Answers

Answered by pulakmath007
3

SOLUTION

GIVEN

sin 40° = 3x - 2

TO DETERMINE

tan 50° + tan 20° in terms of x

EVALUATION

Here it is given that sin 40° = 3x - 2

Now

 \displaystyle \sf{  \tan {50}^{ \circ}  +  \tan {20}^{ \circ}}

 \displaystyle \sf{ =  \frac{\sin {50}^{ \circ}}{\cos {50}^{ \circ}} + \frac{\sin {20}^{ \circ}}{\cos {20}^{ \circ}} }

 \displaystyle \sf{ =  \frac{\sin {50}^{ \circ}\cos {20}^{ \circ} +\cos {50}^{ \circ}\sin {20}^{ \circ} }{\cos {50}^{ \circ}\cos {20}^{ \circ}}  }

 \displaystyle \sf{ =  \frac{\sin ({50}^{ \circ} +  {20}^{ \circ} )}{\cos {50}^{ \circ}\cos {20}^{ \circ}}  }

 \displaystyle \sf{ =  \frac{\sin {70}^{ \circ} }{\cos {50}^{ \circ}\cos {20}^{ \circ}}  }

 \displaystyle \sf{ =  \frac{\sin ({90}^{ \circ}  -   {20}^{ \circ} )}{\cos {50}^{ \circ}\cos {20}^{ \circ}}  }

 \displaystyle \sf{ =  \frac{\cos   {20}^{ \circ} }{\cos {50}^{ \circ}\cos {20}^{ \circ}}  }

 \displaystyle \sf{ =  \frac{1}{\cos {50}^{ \circ}}  }

 \displaystyle \sf{ =  \frac{1}{\cos ({90}^{ \circ} - {40}^{ \circ})}  }

 \displaystyle \sf{ =  \frac{1}{\sin {40}^{ \circ} }  }

 \displaystyle \sf{ =   \frac{1}{3x - 2}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that (1+cos18)(1+cos54)(1+cos126)(1+cos162)=1÷16

https://brainly.in/question/29235086

2. Find the value of cot (-3155°)

https://brainly.in/question/6963315

Similar questions