Math, asked by sandy9167, 10 months ago

If sin77°=x,than the value of tan 77°​

Answers

Answered by kingkholi14
6

Answer:

We know that

We know thatcos2 θ + sin2 θ = 1

We know thatcos2 θ + sin2 θ = 1⇒ cos2 77° + sin2 77° = 1

We know thatcos2 θ + sin2 θ = 1⇒ cos2 77° + sin2 77° = 1⇒ cos 2 77° = 1 – sin2 77°

We know thatcos2 θ + sin2 θ = 1⇒ cos2 77° + sin2 77° = 1⇒ cos 2 77° = 1 – sin2 77°⇒ cos 77° = √(1 – sin2 77°)

We know thatcos2 θ + sin2 θ = 1⇒ cos2 77° + sin2 77° = 1⇒ cos 2 77° = 1 – sin2 77°⇒ cos 77° = √(1 – sin2 77°)And Given that sin 77° = x

We know thatcos2 θ + sin2 θ = 1⇒ cos2 77° + sin2 77° = 1⇒ cos 2 77° = 1 – sin2 77°⇒ cos 77° = √(1 – sin2 77°)And Given that sin 77° = x⇒ cos 77° = √(1 – x2 )

Step-by-step explanation:

hope it will helpful

MARK as a BRAINLIEST answer

Answered by Anonymous
5

Answer:

X/root.(1-x^2)

@Bblegend

Similar questions