If sinA=1/2(a+1/a) Show that Sin3A=1/2(a^3+1/a^3
Answers
Answered by
2
Answer:
Your answer attached in the photo
Attachments:
Answered by
3
EXPLANATION.
⇒ sinα = 1/2(a + 1/a).
Show that :
⇒ sin3α = -1/2(a³ + 1/a³).
As we know that,
Formula of :
⇒ sin3θ = 3sinθ - 4sin³θ.
⇒ (a + b)³ = a³ + 3a²b + 3ab² + b³.
Using this formula in this question, we get.
⇒ sin3α = 3sinα - 4sin³α.
Put the value in the equation, we get.
⇒ sin3α = 3[1/2(a + 1/a)] - 4[1/2(a + 1/a)]³.
⇒ sin3α = 3/2(a + 1/a) - (4/8)(a + 1/a)³.
⇒ sin3α = 3/2(a + 1/a) - 1/2[a³ + 3(a²)(1/a) + 3(a)(1/a²) + (1/a)³].
⇒ sin3α = 3/2(a + 1/a) - 1/2[a³ + 1/a³ + 3a + 3/a].
⇒ sin3α = 3/2(a + 1/a) - 1/2[a³ + 1/a³ + 3(a + 1/a)].
⇒ sin3α = 3/2(a + 1/a) - 1/2(a³ + 1/a³) - 3/2(a + 1/a).
⇒ sin3α = - 1/2(a³ + 1/a³).
Hence proved.
Similar questions