Math, asked by noorjotsinghman7658, 10 months ago

If sinA = 3/4 calculate cos A and tan A.

Answers

Answered by ayushthemaestro
2

Answer:

  • THERE IS YOUR ANSWER MY FRIEND
  • PLEASE MARK ME AS THE BRAINLIEST IF MY ANSWER WAS BETTER THAN THE OTHERS............
Attachments:
Answered by sourya1794
30

\huge{\mathfrak{\green{\red{\bf\:D}\pink{i}\purple{a}\green{g}\orange{r}\blue{a}\blue{m}\purple{:-}}}}

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\put(7.7,2.9){\large{A}}\put(7.7,1){\large{B}}\put(10.6,1){\large{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\put(10.5,1){\line(-4,3){2.5}}\put(9,0.7){\sf{\large{3k}}}\put(9.4,1.9){\sf{\large{4k}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}

\huge{\mathfrak{\green{\blue{\bf\:S}\pink{o}\purple{l}\green{u}\orange{t}\blue{i}\blue{o}\red{n:-}}}}

\rm\:sinA=\dfrac{p}{h}=\dfrac{BC}{AC}=\dfrac{3}{4}

\rm\:Let\:BC=3k

\rm\:and\:AC=4k

Now,

\rm\:In\:right\:{\triangle\:ABC}

\rm\:AB=\sqrt{{(AC)}^{2}-{(BC)}^{2}}

\rm\:AB=\sqrt{{(4k)}^{2}-{(3k)}^{2}}

\rm\:AB=\sqrt{{16k}^{2}-{9k}^{2}}

\rm\:AB=\sqrt{{7k}^{2}}

\rm\:AB=\sqrt{7}\:k

Then,

\rm\:cosA=\dfrac{b}{h}=\dfrac{AB}{AC}=\dfrac{\sqrt{7}\cancel{k}}{4\cancel{k}}

\rm\:cosA=\dfrac{\sqrt{7}}{4}

\rm\:tanA=\dfrac{p}{b}=\dfrac{BC}{AB}=\dfrac{3\cancel{k}}{\sqrt{7}\cancel{k}}

\rm\:tanA=\dfrac{3}{\sqrt{7}}

Similar questions