Math, asked by shreeji35, 1 year ago

If sinA 3/5 and cos B 5/13 , then find the value of sin (A+B)​

Answers

Answered by halamadrid
7

Given,

sin A = 3/5

cos B = 5/13.

To find,

sin(A+B)

Solution,

Since,  sin A = 3/5

We know that sin² A = 1 - cos² A

⇒   (3/5)² = 1 - cos² A.

⇒   (9/25 ) - 1 = - cos² A.

⇒   -(16/25) = -cos² A

⇒   16/25 = cos² A.

⇒   4/5 = cos A

Similarly,

⇒   cos² B = 1 - sin² B

⇒   (5/13)² = 1 - sin² B

⇒   (25/169) - 1 = - sin² B

⇒   -(144/169) = -sin² B.

⇒   12/13 = sin B.

Formulae of sin(A+B) = sin A cos B + cos A sin B.

⇒   sin(A+B) = (3/5)×(5/13) + (4/5)×(12/13)

⇒   sin(A+B) = 3/13 + 48/65

⇒   sin(A+B) = 3(5) +48(1) / 65

⇒   sin(A+B) = (15 + 48) / 65

⇒   sin(A+B) = 63 / 65,

Hence, the value of sin(A+B) = 63/65.

Similar questions