Math, asked by saipraneeth007, 11 months ago

if sinA+cosA=√2 then evaluate:
tanA+cotA​

Answers

Answered by Nitin2112
3

sin A + cos A=√2  

=(sin A + cos A)²=2  

=sin²A + cos²A + 2•sin A•cos A =2  

=1+2•sin A•cos A=2  

=2 sin A•cos A =1  

=sin A• cos A= 1/2  

tan A+ cot A= (sin A / cos A)+ (cos A/sin A)  

= {(sin²A+cos²A)/ (sin A•cos A)}  

={1/(1/2)}                                            { ∵ (sin²A+cos²A =1) &   ( sin A• cos A= 1/2)}

= 2  

∴ tan A+ cot A= 2

Hope its correct

Plz mark it as brainliest<3


saipraneeth007: hi how to mark answer as brainliest?
Nitin2112: type it in google i too.. dont know
Nitin2112: https://brainly.in/question/2836498 check this copy it and paste it in url
saipraneeth007: its only possible if there are two answers,sorry bro i will wait for the second answer from someone
Nitin2112: ok
Answered by sandy1816
0

sinA+cosA = √2

squaring both sides

(sinA + cosA)² = 2

1+2sinAcosA = 2

2sinAcosA = 1

sinAcosA = 1/2

Now

tanA + cotA

=1/sinAcosA

=1/(1/2)

=2

Similar questions