if sinA+cosA=√2 then evaluate:
tanA+cotA
Answers
Answered by
3
sin A + cos A=√2
=(sin A + cos A)²=2
=sin²A + cos²A + 2•sin A•cos A =2
=1+2•sin A•cos A=2
=2 sin A•cos A =1
=sin A• cos A= 1/2
tan A+ cot A= (sin A / cos A)+ (cos A/sin A)
= {(sin²A+cos²A)/ (sin A•cos A)}
={1/(1/2)} { ∵ (sin²A+cos²A =1) & ( sin A• cos A= 1/2)}
= 2
∴ tan A+ cot A= 2
Hope its correct
Plz mark it as brainliest<3
saipraneeth007:
hi how to mark answer as brainliest?
Answered by
0
sinA+cosA = √2
squaring both sides
(sinA + cosA)² = 2
1+2sinAcosA = 2
2sinAcosA = 1
sinAcosA = 1/2
Now
tanA + cotA
=1/sinAcosA
=1/(1/2)
=2
Similar questions