if sinA + cosA =√3 then prove that tanA + cot A= 1
Answers
Answer:please mark it as brainliest
Step-by-step explanation:
SinA + cosA = √3
Squaring on both sides we get,
(SinA + cosA)² = (√3)²
Sin²A + cos²A +2sinAcosA = 3
1 + 2sinAcosA = 3
2sinAcosA = 3-1
SinAcosA = 2/2
sinAcosA = 1......................(!)
tanA+cotA = 1
sinA/cosA + cosA/sinA = 1
sin²A + cos²A /sinAcosA = 1
1/sinAcosA = 1
sinAcosA = 1.....................(!!)
thus tanA + cotA = 1
herr is your ans.
tanA + cot A= 1
tanA + cot A= 1sinA/cosA+ cosA/sinA =1
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 1
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now ,
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 3
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 1
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....hope it helps you
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....hope it helps you☺☺☺☺☺☺☺
tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....hope it helps you☺☺☺☺☺☺☺so, by (1)&(2)---