Math, asked by sanju8270, 10 months ago

if sinA + cosA =√3 then prove that tanA + cot A= 1​

Answers

Answered by Anonymous
2

Answer:please mark it as brainliest

Step-by-step explanation:

SinA + cosA = √3

Squaring on both sides we get,

(SinA + cosA)² = (√3)²

Sin²A + cos²A +2sinAcosA = 3

1 + 2sinAcosA = 3

2sinAcosA = 3-1

SinAcosA = 2/2

sinAcosA = 1......................(!)

tanA+cotA = 1

sinA/cosA + cosA/sinA = 1

sin²A + cos²A /sinAcosA = 1

1/sinAcosA = 1

sinAcosA = 1.....................(!!)

thus tanA + cotA = 1

Answered by Abhishek63715
0

herr is your ans.

tanA + cot A= 1

tanA + cot A= 1sinA/cosA+ cosA/sinA =1

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 1

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now ,

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 3

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 1

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....hope it helps you

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....hope it helps you☺☺☺☺☺☺☺

tanA + cot A= 1sinA/cosA+ cosA/sinA =1sin²A+ cos²A/sinA cosA = 11/sinAcosA = 1 --------(1)now , sinA + cosA =√3 square both side -sin²A+ cos²A +2sinAcosA = 32sinAcosA = 3-1sinAcosA = 2/2 = 1 --------(2)1/sinAcosA = 11 = 1 hence proved .....hope it helps you☺☺☺☺☺☺☺so, by (1)&(2)---

Similar questions