If sinA+cotA = √2, then evaluate : tanA + cotA.
Answers
Answered by
2
Heya !!
Given :- sinA + cosA = √2
To find :- tanA + cotA
Proof :- sinA + cosA = √2 (given)
Squaring on both sides
(sinA + cosA)² = (√2)²
=> sin²A + cos²A + 2sinAcosA = 2
=> 1 + 2sinAcosA = 2
=> sinAcosA = 1/2 _(1)
We know that, sin²A + cos²A = 1 _(2)
Dividing _(1) and _(2)
sin²A + cos²A / sinAcosA = 1 ÷ (1/2)
=> sin²A + cos²A / sinAcosA = 2
=> sin²A/sinAcosA + cos²A/sinAcosA = 2
=> sinA/cosA + cosA/sinA = 2
=> tanA + cotA = 2
Given :- sinA + cosA = √2
To find :- tanA + cotA
Proof :- sinA + cosA = √2 (given)
Squaring on both sides
(sinA + cosA)² = (√2)²
=> sin²A + cos²A + 2sinAcosA = 2
=> 1 + 2sinAcosA = 2
=> sinAcosA = 1/2 _(1)
We know that, sin²A + cos²A = 1 _(2)
Dividing _(1) and _(2)
sin²A + cos²A / sinAcosA = 1 ÷ (1/2)
=> sin²A + cos²A / sinAcosA = 2
=> sin²A/sinAcosA + cos²A/sinAcosA = 2
=> sinA/cosA + cosA/sinA = 2
=> tanA + cotA = 2
JayaMurali:
Thnks
Similar questions
Science,
8 months ago
Math,
8 months ago
Computer Science,
1 year ago
Math,
1 year ago
Physics,
1 year ago