Math, asked by spadma33, 9 months ago

if sinA =p/q find the value of tanA

Answers

Answered by dishantkapoor29
0

Answer:

It should be:

TanA=1

Hope I am correct.

And this helps you.

Answered by Anonymous
5

Answer:

\large\boxed{\sf{\tan A = \dfrac{p}{{q}^{2}-{p}^{2}}}}

Step-by-step explanation:

Given

 \sin( \alpha )  =  \frac{p}{q}

To find \tan \alpha

We know that

 \cos( \alpha )  =  \sqrt{1 -  { \sin }^{2}  \alpha }

Therefore, we get

 =  >  \cos( \alpha )  =  \sqrt{1 -  {( \frac{p}{q} )}^{2} }  \\  \\  =  >  \cos( \alpha )  =  \sqrt{1 -  \frac{ {p}^{2} }{ {q}^{2} } }  \\  \\  =  >  \cos( \alpha )  =  \sqrt{  \frac{ {q}^{2}  -  {p}^{2} }{ {q}^{2} }  }  \\  \\  =  >  \cos( \alpha )  =  \frac{ \sqrt{ {q}^{2}  -  {p}^{2} } }{q}

Now, we know that,

 \tan( \alpha )  =  \dfrac{ \sin( \alpha ) }{ \cos( \alpha ) }

Therefore, we will get

 =  >  \tan( \alpha )  =  \dfrac{ \frac{p}{q} }{ \frac{ {q}^{2} -  {p}^{2}  }{q} }  \\  \\  =  >  \tan( \alpha )  =  \frac{p}{q}  \times  \frac{q}{ {q}^{2} -  {p}^{2}  }  \\  \\  =  >  \tan( \alpha )  =  \frac{p}{ {q}^{2}  -  {p}^{2} }

Hence, \bold\red{\tan A = \dfrac{p}{{q}^{2}-{p}^{2}}}

Similar questions