if sinA +sin(square )A =1 prove that cos(square )A+cos(to the power 4)A =1
Answers
Answered by
69
if sinA+sin^2A=1.
sinA= 1-sin^2A ( cos^2A=1-sin^2)
sinA=cos^2A to
cos^2A+cos^4A
(sin)^1A+ sin^2A
1
sinA= 1-sin^2A ( cos^2A=1-sin^2)
sinA=cos^2A to
cos^2A+cos^4A
(sin)^1A+ sin^2A
1
Answered by
54
Sin A + sin(square) A=1
Sin A =1- sin(square) A . (1)
By identity
sin(square) A+cos(square) A=1
1-sin(square) A=cos(square) A
On putting this value in (1)
Sin A= cos (square) A
On squaring
Sin (square) A= cos (raised to 4) A. (2)
We have to find
Cos (square) A+cos ( power 4)
Cos(square) A + sin(square)A From(2)
=1 . by identity
Sin A =1- sin(square) A . (1)
By identity
sin(square) A+cos(square) A=1
1-sin(square) A=cos(square) A
On putting this value in (1)
Sin A= cos (square) A
On squaring
Sin (square) A= cos (raised to 4) A. (2)
We have to find
Cos (square) A+cos ( power 4)
Cos(square) A + sin(square)A From(2)
=1 . by identity
Similar questions