Math, asked by chahal222, 1 year ago

If SinA/SinB=m , and cosA/cosB=n , pove that: tanA=+- m/n1

Answers

Answered by sanya55
2
Heya!!Here is your answer friend ⤵⤵
 \frac{sin \:  \: a \: }{sin \:  \: b}  = m \:  \: and \:  \:  \frac{cos \:  \: a}{cos \:  \: b \: }  = n \\  \:  \:  \\ to \: prove =  \: tan \:  \: a \:  \:   \frac{ + }{ - }  \frac{m}{n}  \sqrt{ \frac{1 -  {n}^{2} }{m {}^{2 }  - 1} }  \\  \\ sin \:  \: b \:  =   \frac{sin \:  \: a}{m}  \:  \:  \:  \:  \:  \: cos \:  \: b =  \frac{cos \:  \:  \: a \: }{n}  \\ adding \: and \: squaring \:  \: the \: equations \\  \\ sin {}^{2}  \: a \:  +  \:  \: cos {}^{2}  \:  \: b =  \frac{sin {}^{2} a \: }{m {}^{2} }  +   \frac{cos {}^{2} a}{n {}^{2} }  \\ dividing \: both \: sides \: by \: cos {}^{2} a \\  \\ sec {}^{2} a =  \frac{1}{m {}^{2} } tan {}^{2} a \: \:  +  \frac{1}{n {}^{2} }  \\ \\  1 + tan {}^{2} a =  \frac{1}{m {}^{2} } tan {}^{2} a +  \frac{1}{n {}^{2} }  \\  \\ tan {}^{2} a -  \frac{1}{m {}^{2} } tan {}^{2} a \:  =  \frac{1}{n {}^{2} }  - 1 \\ tan {}^{2} a(1 -  \frac{1}{m {}^{2} } ) =  \frac{1 - n {}^{2} }{n {}^{2} }  \\ tan {}^{2} a( \frac{m {}^{2}  - 1}{m {}^{2} } ) =  \frac{1 - n {}^{2} }{n {}^{2} }  \\ tan {}^{2} a =  \frac{m {}^{2}(1 - n {}^{2}  )}{n {}^{2} (m {}^{2}  - 1)}  \\ tan \: a \:  =  +  - \frac{m}{n}  \sqrt{ \frac{1 - n {}^{2} }{m {}^{2} - 1 } }
Hence LHS= RHS
Similar questions