If sina + sinB + siny = 0 = cosa + cosB + cosy, then show that cos(a - b) + cos(B - y) + cos(y - a) = -3/2
Answers
Hope it's helpful to you.
Please mark as Brainlist answer.
Given,
Sin a + Sin B + Sin y = 0 = Cos a + Cos B + Cos y
To prove,
Cos (a - B) + Cos (B - y) + Cos (y - a) = -3/2
Solution,
We can simply solve this mathematical problem using the following process:
Mathematically,
For any two angles x and y;
(a) Cos (x-y) = Cos x.Cos y + Sin x.Sin y
(b) Sin^2 a + Cos^2 a = 1
{Statement-1}
For three variables a, b, and c, there exists an algebraic identity as follows;(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
{Statement-2}
Now, according to the question;
L.H.S.
= Cos (a - B) + Cos (B - y) + Cos (y - a)
= Cos a.Cos B + Sin a.Sin B + Cos B.Cos y + Sin B.Sin y + Cos a.Cos y + Sin a.Sin y
{according to statement-1 (a)}
= 1/2 × 2{Cos a.Cos B + Sin a.Sin B + Cos B.Cos y + Sin B.Sin y + Cos a.Cos y + Sin a.Sin y}
= 1/2 × {2Cos a.Cos B + 2Sin a.Sin B + 2Cos B.Cos y + 2Sin B.Sin y + 2Cos a.Cos y + 2Sin a.Sin y}
= 1/2 × {(2Cos a.Cos B + 2Cos B.Cos y + 2Cos a.Cos y) + (2Sin a.Sin B + 2Sin B.Sin y + 2Sin a.Sin y)}
= 1/2 × [{(Cos^2 a + Cos^2 B + Cos^2 y) + (2Cos a.Cos B + 2Cos B.Cos y + 2Cos a.Cos y)} + {(Sin^2 a + Sin^2 B + Sin^2 y) + (2Sin a.Sin B + 2Sin B.Sin y + 2Sin a.Sin y)} - {Cos^2 a + Cos^2 B + Cos^2 y + Sin^2 a + Sin^2 B + Sin^2 y}]
= 1/2 × [{(Cos^2 a + Cos^2 B + Cos^2 y) + (2Cos a.Cos B + 2Cos B.Cos y + 2Cos a.Cos y)} + {(Sin^2 a + Sin^2 B + Sin^2 y) + (2Sin a.Sin B + 2Sin B.Sin y + 2Sin a.Sin y)} - {(Sin^2 a + Cos^2 a) + (Sin^2 B+ Cos^2 B) + (Sin^2 y + Cos^2 y)}]
= 1/2 × [(Cos a + Cos B + Cos y)^2 + (Sin a + Sin B + Sin y)^2 - {(Sin^2 a + Cos^2 a) + (Sin^2 B+ Cos^2 B) + (Sin^2 y + Cos^2 y)}]
{according to statement-2}
= 1/2 × [(0)^2 + (0)^2 - {1+1+1}]
{according to statement-1 (b)}
= 1/2 × [0 + 0 - 3]
= (-3)/2 = R.H.S.
Hence, it is proved that Cos (a - B) + Cos (B - y) + Cos (y - a) = -3/2.