if sinasinb-cosacosb =1 show that tana+tanb=0
Answers
Step-by-step explanation:
Given:-
Sin A Sin B - Cos A Cos B = 1
To Show :-
Tan A + Tan B = 0
Solution:-
Given that :
Sin A Sin B - Cos A Cos B = 1
It can be written as
-(Cos A Cos B -Sin A Sin B) = 1
We know that
Cos A Cos B - Sin A Sin B = Cos (A+B)
=>- Cos (A+B) = 1
=>Cos (A+B) = -1
=>Cos (A+B) = Cos 180°
=>A+B = 180°
On taking Sin both sides
=>Sin (A+B)= Sin 180°
=>Sin (A+B)= Sin(90°+90°)
We know that Sin (90°+A) = Cos A
=>Sin (A+B)= Cos 90°
=>Sin (A+B)= 0° --------------(1)
Now ,
Tan A + Tan B
=>(Sin A/Cos A ) + (Sin B/Cos B)
=>(Sin A Cos B + Cos A Sin B )/ Cos A Cos B
We know that
Sin A Cos B + Cos A Sin B = Sin (A+B)
=>Sin (A+B)/Cos A Cos B
From (1)
=>0/(Cos A Cos B)
=>0
Tan A + Tan B = 0
Answer:-
If Sin A Sin B - Cos A Cos B = 1 then
Tan A + Tan B = 0
Used formulae:-
- Cos A Cos B - Sin A Sin B = Cos (A+B)
- Sin (90°+A) = Cos A
- Sin A Cos B + Cos A Sin B = Sin (A+B)
☺━━━━━━━━━━━━━━━━━━━
sin a sin b - cos a cos b + 1 = 0
cos a cos b - sin a sin b = 1
cos (a+b) = 1
Hence : sin (a+b) = 0
tan (a+b) = 0/1 = 0
( tan a + tan b ) / ( 1 - tan a tan b ) = 0
tan a + tan b = 0
tan a [ 1 + ( tan b / tan a ) ] = 0
1 + ( 1/ tan a ) tan b = 0
1 + cot a tan b = 0
━━━━━━━━━━━━━━━━━━━━☺