Math, asked by govindabodda, 8 months ago

If sine, cos are the roots of the equation
ax? - bx + c = 0 then the relation among
a,b,c is
(A) a? - b2 + 2ac = 0
(B) a2 + b2 - 2ac = 0
(C) a? - b2 - 2ac = 0
(D) a2 + b2 + 2ac = 0​

Answers

Answered by satyasreevanka
6

Answer:

A

Step-by-step explanation:

We know

cos²x + sin²x = 1

Here roots are cos and sin

let them be m and n

  • m= cosx
  • n= sinx

we know m²+n²= 1

From equation sum of roots

  • m+n = -(-b/a). = b/a

Product of roots

  • m*n = c/a

(m+n)²= m²+n²+2mn

==> m²+n²= (m+n)²- 2mn

==> 1 = (b/a)² - 2(c/a)

==>( b²-2ac ) / a²= 1

==> b²- 2ac= a²

==> a²-b²+2ac = 0

Answered by Anonymous
4

Correct Question:-

If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation.

(A) a2 + b2 + 2ac = 0

(B) a2 – b2 + 2ac = 0

(C) a2 + c2 + 2ab = 0

(D) a2 – b2 – 2ac = 0

Answer:-

The correct choice is (B).

Solution:-

Given that

 \bf {sin \:  \:  \theta \: and \:  \: cos \:  \:  \theta \: are \:  \: the \:  \: roots \:  \: of \:  \:  \: the \:  \: equation \:  \:  {a}^{2}  \:  - bx \:  + c = 0}

so

 \bf {sin  \: θ + cos  \: θ =b/a}

and

 \bf {sin θ  \: cos θ = c/a}

Using the identity

 \bf \fbox \green{</p><p>(sinθ + cos θ)2 = sin2θ + cos2θ + 2 sin θ cos θ,}

we have,

 \bf {\fbox \red{  \:  \:  \:  \:  \:  \: \frac{ {b}^{2} }{ {a}^{2} }  = 1 +  \frac{2c}{a} \:  \:  \:  \:  \:  \: } \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \fbox \red{ \:  \:  \:  \:  {a}^{2}  -  {b}^{2}  + 2ac = 0 \:  \:  \: }

Similar questions