if sinQ+cosQ=m and secQ+cosecQ=n,then prove that n(m^2-1)2m
Answers
Answered by
2
ANSWER
.........
....
@@ @@ @@ @@ @@ @@
LHS : n(m2 - 1)
= secA +cosecA [ (sinA +cosA)2 - 1]
= secA + cosecA [ sin2A + cos2A + 2 sinA .cosA -1]
= secA +cosecA [ 1 +2 sinA . cosA -1] [sin2A +cos2A =1]
= secA +cosecA [ 2sinA cosA]
= 2 secA sinA cosA + 2 cosecA sinA cosA
= 2sinA + 2 cosA [secA*cosA=1 and cosecA*sinA=1]
= 2(sinA +cosA)
= 2 m [sinA +cosA =m]
= RHS
Hope helps friend.......
chaitanya9842:
Thanks bro
Answered by
3
Given, sin Q + cos Q = m
Squaring both sides of the above equation, we will get :
1 + 2 sin Q cos Q = m²
Now, LEFT HAND SIDE :
n (m² - 1)
= (sec Q + cosec Q) (1+2 sin Q cos Q -1)
= ((1/cos Q) + (1/sin Q)) (2 sin Q cos Q)
= 2 (sin Q + cos Q)
= 2 m [ PUTTING THE VALUE OF sin Q + cos Q ]
= RIGHT HAND SIDE
THEREFORE, L.H.S. = R.H.S. (PROVED)
Similar questions