Math, asked by shreyashagrawal740, 11 months ago

if sintheta + cos theta = root2 the prove that tan theta + cot theta =2

Answers

Answered by Anonymous
12

AnswEr :

Given that,

 \sf \: sin \:  \theta + cos \:  \theta =  \sqrt{2}

To Prove :

 \sf \: tan \:  \theta + cot \:  \theta = 2

Consider,

 \sf \: sin \: \theta + cos \: \theta =  \sqrt{2}

Squaring on both sides of the equation,

 \longrightarrow \sf \: (sin \:  \theta + cos  \: \theta) =  {( \sqrt{2} \: ) }^{2}  \\  \\  \longrightarrow \:  \sf \:  {sin}^{2}  \theta + cos {}^{2}  \theta + 2sin \theta.cos \:  \theta = 2 \\  \\  \longrightarrow \:  \sf \: 2sin \:  \theta.cos \:  \theta = 1 \\  \\  \longrightarrow \:   \boxed{\boxed{ \sf \: sin \theta.cos \theta =  \dfrac{1}{2}}}

  • sin²∅ + cos²∅ = 1

Now,

 \sf \: tan \:  \theta + cot \:  \theta  \\  \\  \dashrightarrow \:  \sf \:  \dfrac{sin \:  \theta}{cos \:  \theta}  +  \dfrac{cos \:  \theta}{sin \:  \theta}  \\   \\  \dashrightarrow \:  \sf \:  \dfrac{ {sin}^{2} \theta +  {cos}^{2} \theta  }{sin \theta.cos \theta}  \\  \\  \dashrightarrow \:  \sf \:  \dfrac{1}{( \frac{1}{2}) } \:  \dashrightarrow \: 2

Hence,ProveD

Answered by Saby123
2

 \sin( \phi)  +  \cos( \phi)  =  \sqrt{2}  \\  \\  =  >  {( \sin( \phi)  +  \cos( \phi))}^{2}  = 2 \\  \\  =  >1 + 2 \sin( \phi)   \cos( \phi)  = 2 \\  \\

 \sin( \phi )  \cos( \phi)  =  \dfrac{1}{2}  \\  \\  =  = >  \tan( \phi)  +  \cot( \phi)  \\  \\  =  >  \frac{ { \sin( \phi) }^{2} +  { \cos( \phi) }^{2}  }{\sin( \phi )  \cos( \phi)}  = 2

Similar questions