if sintheta-costheta=1/2 find 1/sintheta+costheta
Answers
Answered by
3
Answer:
2/√7
Step-by-step explanation:
Given if sintheta - costheta=1/2 find 1/sintheta + costheta
Let us take sinθ - cosθ = 1/2
squaring both sides we get
(sinθ - cosθ)^2 = 1/4
sin^2θ + cos^2θ - 2sinθcosθ = 1/4
1 - 1/4 = 2sinθcosθ
2sinθcosθ = 3/4
Now (1 / sinθ + cosθ)^2 = 1/ sin^2θ + cos^2θ + 2sinθcosθ
= 1 / 1 + 2sinθcosθ
= 1 / 1 + 3/4
= 1/ 7/4
= 4/7
1/sinθ + cosθ = √4/7
1/sinθ + cosθ = 2/√7
Similar questions