If the squared difference of the zeros of the polynomial f(x)=x^2+px+45 is equal to 144,find the value of p.
Answers
Answered by
5
please follow me on brainly
Attachments:
arshdeep96:
i am seening this formula first time (a+b)^2-(a-b)^2=4ab.
Answered by
9
Answer:
p = ±16.12 , ±8.93i
Step-by-step explanation:
Let say a & b are zeros of the polynomial f(x)=x²+px+45
Then a + b = -p
ab = 45
I a² - b² I = 144 given
I (a+b)(a-b) I = 144
a + b = -p
Squaring both sides
a² + b² + 2ab = p²
=> a² + b² + 2×45 = p²
=> a² + b² = p² - 90
(a-b)² = a² + b² - 2ab
=> (a-b)² = p² - 90 - 90
=> (a-b)² = p² - 180
=> a-b = ±√(p² - 180)
I (a+b)(a-b) I = 144
I (-p)(±√(p² - 180)) I = 144
Squaring both sides
p²(p² - 180) = 144²
=> p²(p² - 180) = 20736
let say p² = y
y ( y-180) = 20736
=> y² - 180y - 20736 = 0
=> y = {180 ± √((180)² - 4×(-20736))}/2
=> y = (180 ± 339.62)/2
=> y = 259.81 , -79.81
p² = y
p = ±√y
p = ±16.12 , ±8.93i
Similar questions
Hindi,
6 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Geography,
1 year ago
Math,
1 year ago