Math, asked by kathiriyasanket99, 7 months ago

If sinX =30 and
secX=1/30 then
find the value of
tanX.​

Answers

Answered by hipsterizedoll410
1

Answer: 1

Given:

\large\text{$\sf sinx = 30$}

\large\text{$\sf sec x=\frac{1}{30}$}

To find:

\large\text{$\sf tanx$}

Explanation:

\sf\text{We know that,}

\large \text{$\sf sinx=\frac{Perpendicular(P)}{Hypotenuse(H)}$}

\large\text{ $ \sf secx=\frac{1}{cosx}=\frac{Hypotenuse(H)}{Base(B)}$}

\large\text{$\sf tanx=\frac{Perpendicular(P)}{Base(B)}$}

\sf\text{According to the question,}

\large\text{$\sf sinx=\frac{30}{1}=\frac{P}{H}$}

\large\text{$\sf secx=\frac{1}{30} =\frac{H}{B}$}

\large\text{$\sf tanx=\frac{P}{B}=\frac{30}{30}=1$}

\sf\textbf{Therefore, the value of tanx is 1.}

Similar questions