Math, asked by ritam92, 1 year ago

if sinx + cosx = 1/2, then find sin^4 x + cos^4 x as a rational number of equals

Answers

Answered by chopraneetu
10

 \sin x + cos x =  \frac{1}{2}  \\ on \: squaring \: we \: get \\ {(sin x + cos x) }^{2}  =  {( \frac{1}{2} )}^{2}  \\  { \sin }^{2} x +  { \cos }^{2} x + 2sinxcosx =  \frac{1}{4}  \\ 1 + 2sinxcosx =  \frac{1}{4}  \\ 2sinxcosx =  \frac{1}{4}  - 1  \\ 2sinxcosx =   -  \frac{3}{4}  \\ sinxcosx =   -  \frac{3}{8}  \\  \\ now  \\  \\ { \sin }^{2} x +  { \cos }^{2} x = 1 \\ squaring \: we \: get   \\ { \sin }^{4} x +  { \cos }^{4} x + 2{ \sin }^{2} x { \cos }^{2} x =  {1}^{2}  \\ { \sin }^{4} x +  { \cos }^{4} x + 2(  - \frac{3}{8} )=  {1}^{2} \\ { \sin }^{4} x +  { \cos }^{4} x  -  \frac{3}{4}  = 1 \\ { \sin }^{4} x +  { \cos }^{4} x  = 1 +  \frac{3}{4}   \\{ \sin }^{4} x +  { \cos }^{4} x =  \frac{7}{4}
Similar questions