If sinx+cosx=1/2,then sin^4x+cos^4x as a rational number equals?
Answers
Answered by
11
Answer:
=23/32
Step-by-step explanation:
sinx+cosx=1/2
Squaring on both sides
(sinx+cosx)^2=(1/2)^2
sin^2x+2sinx.cosx+cos^2x=1/4
{Since.. sin^2+cos^2=1 }
1+2sinx.cosx=1/4
2sinx.cosx=1/4–1
2sinx.cosx=-3/4
sinx.cosx=-3/4/2
sinx.cosx=-3/8
Now, To find sin^4x+cos^4x
(Sin^2x)^2 + (cos^2x)^2
Using a^2+b^2=(a+b)^2–2ab
=(sin^2x+cos^2x)^2 - 2.sin^2x.cos^2x
=1^2 - 2.sinx.sinx.cosx.cosx
=1–2(sinx.cosx)^2
=1–2.(-3/8)^2
=1–2(9/64)
=1–18/64
=(64–18)/64
=46/64
=23/32
Similar questions