If sinx + cosx = root 7 by 2 where x is member of [ 0, pi by 4] , then find the value of tan x by 2
Answers
given, sinx + cosx = √7/2 , where x [0, π/4 ]
using formula, sin2A = 2tanA/(1 + tan²A)
using formula, sin2A = 2tanA/(1 + tan²A)cos2A = (1 - tan²A)/(1 + tan²A)
so, sinx = 2tan(x/2)/{1 + tan²(x/2)}
cosx = (1 - tan²(x/2))/{1 + tan²(x/2)}
so, 2tan(x/2)/{1 + tan²(x/2)} + {1 - tan²(x/2)}/{1 + tan²(x/2)} = √7/2
or, {1 - tan²(x/2) + 2tan(x/2)}/{1 + tan²(x/2)} = √7/2
or, 2 - 2tan²(x/2) + 4tan(x/2) = √7 + √7tan²(x/2)
or, (√7 + 2)tan²(x/2) - 4tan(x/2) + (√7 - 2) = 0
Let tan(x/2) = p
or, (√7 + 2)p² - 4p + (√7 - 2) = 0
or, p = {4 ± √{16 - 12}/2(√7 + 2)
= (2 ± 1 )/(√7 + 2)
= 1/(√7 + 2) , 3/(√7 + 2)
= (√7 - 2)/3 , (√7 - 2)
hence, tan(x/2) = (√7 - 2)/3 or, (√7 - 2)
but x lies between [0, π/4 ]
so, x/2 lies between [0, π/8] , tan(π/8) ≈ 0.41
so, tan(x/2) ≠ (√7 - 2)
hence, value of tan(x/2) = (√7 - 2)/3
Answer:
given, sinx + cosx = √7/2 , where x \in∈ [0, π/4 ]
using formula, sin2A = 2tanA/(1 + tan²A)
using formula, sin2A = 2tanA/(1 + tan²A)cos2A = (1 - tan²A)/(1 + tan²A)
so, sinx = 2tan(x/2)/{1 + tan²(x/2)}
cosx = (1 - tan²(x/2))/{1 + tan²(x/2)}
so, 2tan(x/2)/{1 + tan²(x/2)} + {1 - tan²(x/2)}/{1 + tan²(x/2)} = √7/2
or, {1 - tan²(x/2) + 2tan(x/2)}/{1 + tan²(x/2)} = √7/2
or, 2 - 2tan²(x/2) + 4tan(x/2) = √7 + √7tan²(x/2)
or, (√7 + 2)tan²(x/2) - 4tan(x/2) + (√7 - 2) = 0
Step-by-step explanation:
Let tan(x/2) = p
or, (√7 + 2)p² - 4p + (√7 - 2) = 0
or, p = {4 ± √{16 - 12}/2(√7 + 2)
= (2 ± 1 )/(√7 + 2)
= 1/(√7 + 2) , 3/(√7 + 2)
= (√7 - 2)/3 , (√7 - 2)
hence, tan(x/2) = (√7 - 2)/3 or, (√7 - 2)
but x lies between [0, π/4 ]
so, x/2 lies between [0, π/8] , tan(π/8) ≈ 0.41
so, tan(x/2) ≠ (√7 - 2)
hence, value of tan(x/2) = (√7 - 2)/3