Math, asked by viraatmankali, 24 days ago

If sinx cosy = 1/4 and 3tanx=4tany then 16sin(x-y)=?

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sin(x)  \cos(y)  =  \frac{1}{4} \\

And,

3 \tan(x)  = 4 \tan(y)

 \implies \:  \frac{\tan(x)}{ \tan(y) }  =  \frac{4}{3}   \\

 \implies \:  \frac{\sin(x) \cos(y) }{  \cos(x) \sin(y) }  =  \frac{4}{3}   \\

 \implies \:  \frac{ \frac{1}{4}  }{  \cos(x) \sin(y) }  =  \frac{4}{3}   \\

 \implies \:  \frac{1}{4}  =  \frac{4}{3} \cos(x) \sin(y) \\

 \implies \:     \cos(x) \sin(y)  = \frac{3}{16} \\

Now,

16 \sin(x - y)  = 16 \sin(x) \cos(y)   - 16 \cos(x)  \sin(y)  \\

 \implies16 \sin(x - y)  = 16  \times  \frac{1}{4}    - 16  \times  \frac{3}{16}  \\

 \implies16 \sin(x - y)   = 4   - 1  \\

 \implies16 \sin(x - y)   = 3  \\

Similar questions