Math, asked by yodares749, 10 months ago

 If the lines given by

3x + 2ky = 2

2x + 5y + 1 = 0

are parallel, then the value of k is

(A) 5/4                                                            

(B) 2/5

(C) 15/4                                                          

(D) 3/2

Answers

Answered by Anonymous
24

Answer: (C) 15/4

Explanation:

For parallel lines

a1/a2=b1/b2≠c1/c2

=> 3/2=2k/5

=> k=15/4

hope it's helps you ❤️

Answered by pulakmath007
22

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \displaystyle \:  \longmapsto \:  \: FORMULA TO BE IMPLEMENTED :

A pair of Straight Lines

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

Is said to be parallel if

 \displaystyle \:  \:  \frac{a_1}{a_2}   = \frac{b_1}{b_2}

 \displaystyle \:  \longmapsto \:  \: CALCULATION :

Given pair of linear equations

3x +2ky - 2 =0 \:  \: and  \:  \: 2x + 5y +1=0

Comparing with

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

We get

 \displaystyle \: a_1 = 3 \:   , \: b_1 = 2k</p><p> \:    ,  c_1= - 2\: and \:  \: a_2 = 2 \:    ,  \:  b_2 = 5\:  ,   \:  \: c_2= 1

Now  \displaystyle \:  \:  \frac{a_1}{a_2}   = \frac{b_1}{b_2}

gives

 \displaystyle \:  \frac{3}{2}  =  \frac{2k}{5}

 \implies \: k \:  =   \frac{15}{4}

RESULT

If the lines given by

3x + 2ky = 2

2x + 5y + 1 = 0

are parallel, then the value of k is

(C) 15/4

Similar questions