Math, asked by BilalRawani, 9 months ago

if sinx+siny=1/4, cosx+cosy=1/3 then show that cot (x+y)=7/24​

Answers

Answered by hastisrupareliya
7

Answer:

this is your answer

Step-by-step explanation:

refer to the picture

thank you

Attachments:
Answered by knjroopa
11

Step-by-step explanation:

Given If sinx + siny = 1/4, cosx + cosy = 1/3 then show that cot (x+y) = 7/24

  • Given sinx + siny = ¼
  • So we have sina + sinb = 2 sin (a + b / 2) cos (a – b / 2)
  •         cosa + cosb = 2 cos (a + b / 2)cos (a – b / 2)
  •  Now sinx + siny = ¼
  •     So 2 sin(x + y / 2) cos (x – y / 2) = ¼ ---------1
  •      So cosx + cosy = 1/3
  •           2 cos (x + y / 2)cos (x – y / 2) = 1/3-------2
  •     Equation 1 divided by 2 will be
  •    2 sin(x + y / 2) cos (x – y / 2) = ¼ /
  •     2 cos (x + y / 2)cos (x – y / 2) = 1/3
  •        tan (x + y / 2) = ¼ x 3/1
  •                  tan(x + y/2) = ¾
  • Now we can write tan(x + y) as tan 2 (x + y / 2)
  •                                                             = 2 tan (x + y / 2) / 1 – tan^2 (x + y / 2)
  •                                                               = 2(3/4) / 1 – (3/4)^2
  •                                                                  = 3/2 / 16 – 9 / 16
  •                                                                 = 3/2 x 16 / 7
  •                                                     tan(x + y) = 24 / 7
  •                           Now we have cot (x + y) = 1/ tan(x + y)
  •                                                                     = 1/24/7
  •                                                                     = 7/24

Reference link will be

https://brainly.in/question/7988636

Similar questions