Math, asked by raviraja7445, 1 year ago

If sinx+siny=3(cosy-cosx) then value of sin3x/sin3y is

Answers

Answered by aman1pal
21
sin3x/sin3y=-1. I hope this helps you
Attachments:
Answered by pinquancaro
36

Answer:

The value of \frac{\sin 3x}{\sin 3y}=-1

Step-by-step explanation:

Given : Expression \sin x+\sin y=3(\cos y-\cos x)

To find : The value of \frac{\sin 3x}{\sin 3y}

Solution :

Expression \sin x+\sin y=3(\cos y-\cos x)

\sin x+\sin y=3\cos y-3\cos x

\sin x+3\cos x=3\cos y-\sin y

Substitute, 1=r\cos\theta and  3=r\sin\theta

r\cos\theta\sin x+r\sin\theta\cos x=r\sin\theta\cos y-r\cos\theta\sin y

r(\cos\theta\sin x+\sin\theta\cos x)=r(\sin\theta\cos y-\cos\theta\sin y)

\sin(x+\theta)=\sin(\theta-y)

x+\theta=\theta-y

x=-y

Now, We substitute the value of x in \frac{\sin 3x}{\sin 3y}

=\frac{\sin 3(-y)}{\sin 3y}

=\frac{\sin (-3y)}{\sin 3y}

We know, \sin(-\theta)=-\sin\theta

=\frac{-\sin (3y)}{\sin 3y}

=-1

Therefore, The value of \frac{\sin 3x}{\sin 3y}=-1

Similar questions