if sinx+siny+sinz+sinw=-4 then the value of sin ^400x+sin^300y+sin^200z+sin^100w
Answers
Answered by
11
We know that ,
f(t) |min = sin (t) |min = -1. ------(1)
That is, minimum value of sin(t) = -1
Here,
![\sin(x) + \sin(y) + \sin(z) + \sin(w) = - 4 \\ \sin(x) + \sin(y) + \sin(z) + \sin(w) = - 4 \\](https://tex.z-dn.net/?f=+%5Csin%28x%29++%2B++%5Csin%28y%29++%2B++%5Csin%28z%29++%2B++%5Csin%28w%29++%3D++-+4+%5C%5C++)
Thus, this is possible,
when,
sin (x) = sin(y) = sin(z) = sin(w) = -1
Therefore,
sin^400(x) + sin^300(y) + sin^200(z) + sin^100(w)
=>
![{( - 1)}^{400} + {( - 1)}^{300} + { (- 1)}^{200} \\ + {( - 1)}^{100} \\ = > 1 + 1 + 1 + 1 \\ = > 4 {( - 1)}^{400} + {( - 1)}^{300} + { (- 1)}^{200} \\ + {( - 1)}^{100} \\ = > 1 + 1 + 1 + 1 \\ = > 4](https://tex.z-dn.net/?f=+%7B%28+-+1%29%7D%5E%7B400%7D++%2B++%7B%28+-+1%29%7D%5E%7B300%7D++%2B++%7B+%28-+1%29%7D%5E%7B200%7D++%5C%5C++%2B++%7B%28+-+1%29%7D%5E%7B100%7D++%5C%5C+++%3D+%26gt%3B+1++%2B+1+%2B+1+%2B+1+%5C%5C++%3D++%26gt%3B+4)
So, Required value is 4 .
f(t) |min = sin (t) |min = -1. ------(1)
That is, minimum value of sin(t) = -1
Here,
Thus, this is possible,
when,
sin (x) = sin(y) = sin(z) = sin(w) = -1
Therefore,
sin^400(x) + sin^300(y) + sin^200(z) + sin^100(w)
=>
So, Required value is 4 .
ramadugurahul:
thank you
Similar questions