If Sm= Sn of an AP
Then prove that Sm+n=0
Attachments:
Answers
Answered by
40
h
Attachments:
sk004:
how is (2a +(m+n-1) d)=0
Answered by
120
Sm = m/2 [ 2a + ( m - 1 ) d]
Sn = n/2 [ 2a + ( n - 1) d]
Sm = Sn
m/2 [ 2a + ( m - 1 ) d] = n/2 [ 2a + ( n - 1) d]
m [2a + dm - d] = n[ 2a + dn - d]
2am + dm^2 - dm = 2an + dn ^2 - dn
2am - 2an = dn^2 - dn - dm^2 + dm
2a( m - n ) = d[ n^2 - n - m^2 + m ]
2a( m - n ) = d[ ( n ^2 - m^2) + ( m - n )]
2a( m - n ) = d[ ( n - m ) ( n + m ) + ( m - n)]
2a ( m - n) = d [ {- ( m - n )} ( n + m ) + ( m - n)]
2a ( m - n) = d ( m - n ) [ - ( m + n) + 1 ]
2a = d ( - m - n +1)
S(m+n) = (m +n) / 2 [ 2a + ( m +n - 1) d]
S(m+n) = ( m +n) /2 [ d( - m - n + 1) + ( m +n - 1) d]
S(m+n) = ( m + n ) /2 [ d( - m - n + 1 + m +n - 1)]
S(m+n) = ( m +n ) /2 [ d ( 0 )]
Hence, PROVED.
Similar questions