If Sn denotes the sum of first n terms of an AP Prove that S30=3(S20-S10)
Answers
Answered by
4
Explanation:
S(30) = 30/2 {2a + (30-1)d}
S(30) = 15{ 2a + 29d} -----(1)
S(20) = 20/2 {2a + (20-1)d}
S(20) = 10{ 2a + 19d} ------(2)
S(10) = 10/2 {2a + (10-1)d}
S(10) = 5{2a + 9d} ----(3)
from equation (2) - (3)
S(20) - S(10) = 20a + 190d - 10a - 45d
= 10a + 145d = 5 { 2a + 29d}
3{ S(20) - S(10)} = 15 {2a + 29d} ------(4)
from equation (1) & (4)
S(30) = 3 { S(20) - S(10) }
Similar questions