Physics, asked by akutotokzhimo, 6 months ago

if sphere of mass 45 kg is placed at a distance of 30cm from another sphere of mass 75kg. the two sphere mutually attract each other with a gravitational force equal to weight of 1/4th of a milligram. compute the value of the gravitational constant

Answers

Answered by nirman95
4

Given:

Sphere of mass 45 kg is placed at a distance of 30cm from another sphere of mass 75kg. the two sphere mutually attract each other with a gravitational force equal to weight of 1/4th of a milligram.

To find:

Value of Gravitational Constant.

Calculation:

According to NEWTON'S LAW OF GRAVITATION:

 \therefore \: force =  \dfrac{G(m1)(m2)}{ {r}^{2} }

 =  > \:  \dfrac{ {10}^{ - 3} g}{4}  =  \dfrac{G(45)(75)}{ {( \frac{30}{100}) }^{2} }

 =  > \:  \dfrac{ {10}^{ - 3}  \times 10}{4}  =  \dfrac{G(45)(75)}{ {( \frac{30}{100}) }^{2} }

 =  > \:  \dfrac{ {10}^{ - 2}}{4}  =  \dfrac{G(45)(75)}{ {( \frac{30}{100}) }^{2} }

 =  > \:  \dfrac{ {10}^{ - 2}}{4}  =  \dfrac{G(45)(75)}{ {( \frac{3}{10}) }^{2} }

 =  > \:  \dfrac{ {10}^{ - 2}}{4}  =  \dfrac{G(45)(75)}{ \frac{9}{100}}

 =  > \:  \dfrac{ {10}^{ - 2}}{4}  =  \dfrac{G(45)(75) \times 100}{9}

 =  > \:  G = \dfrac{ {10}^{ - 2} \times 9}{4 \times 45 \times 75 \times 100}

 =  > \:  G = \dfrac{ {10}^{ - 4} \times 9}{4 \times 45 \times 75 }

 =  > \:  G = 0.00066 \times {10}^{ - 4}

 =  > \:  G = 6.6 \times {10}^{ - 8}  \: N {m}^{2}  {kg}^{ - 2}

So, the final value comes as:

 \boxed{ \bold{\:  G = 6.6 \times {10}^{ - 8}  \: N {m}^{2}  {kg}^{ - 2} }}

Similar questions