If square root of 18 minus 6 root5=root 'a'minus root'b' then prove that a+b=18
Answers
Answered by
165
Solution:-
_______
√18-6√5 = √a - √b
Squaring both sides.
______
(√18-6√5)² = (√a - √b)²
⇒ 18-6√5 = a + b - 2√a√b
⇒ 18 - 2 × (3√5) = (a + b) - 2(√ab)
⇒ 18 - 2 × (√9×5) = (a+b) - 2(√ab)
⇒ 18 - 2 × (√45) = (a+b) - 2(√ab)
⇒ (15+3) - 2 × (√15×3) = (a+b) - 2(√ab)
Comparing on both sides,
⇒ (a+b) = 15+3
⇒ a+b = 18
Hence proved.
_______
√18-6√5 = √a - √b
Squaring both sides.
______
(√18-6√5)² = (√a - √b)²
⇒ 18-6√5 = a + b - 2√a√b
⇒ 18 - 2 × (3√5) = (a + b) - 2(√ab)
⇒ 18 - 2 × (√9×5) = (a+b) - 2(√ab)
⇒ 18 - 2 × (√45) = (a+b) - 2(√ab)
⇒ (15+3) - 2 × (√15×3) = (a+b) - 2(√ab)
Comparing on both sides,
⇒ (a+b) = 15+3
⇒ a+b = 18
Hence proved.
Answered by
6
if squre root of 18 minus 6 root5 =root 'a' minus root 'b' then prove that a+b=18
hope it will help you
Attachments:
Similar questions