Math, asked by geetaarora23674, 9 months ago

if sum of 5 consecutive terms of an a.p is 115. then find the third term. ​

Answers

Answered by Anonymous
7

\bold\red{\underline{\underline{Answer:}}}

\bold\green{\underline{\underline{Solution}}}

\bold{Let \ five \ consecutive \ terms \ of \ A.P. \ be}

\bold\orange{a, \  a+d, \ a+2d, \ a+3d, \ a+4d}

\bold\green{According \ to \ the \ given \ condition}

\bold{(a)+(a+d)+(a+2d)+(a+3d)+(a+4d)=115}

\bold{4a+10d=115}

\bold{2(2a+5d)=115....(1)}

\bold{Sn=n×2^{-1}[2a+(n-1)d]}

\bold{S5=5×2^{-1}[2a+4d]....(2)}

2(2a+5d)=5×2^-1[2a+4d]....from(1) & (2)

\bold{5a+10d=4a+10d}

\bold{a=0}

\bold{Substitudind \ a=0 \ in \ equation(1)}

\bold{2(0+5d)=115}

\bold{10d=115}

\bold{d=11.5}

\bold{tn=a+(n-1)d=115....(formula)}

\bold{t3=0+(3-1)11.5}

\bold{t3=2×11.5}

\bold{t3=23}

\bold\green{Third \ term \ is \ 23.}

Similar questions